Variable Stabilisation in Boolean Monotonic Model Pools

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

PASTVA Samuel

Rok publikování 2022
Druh Článek ve sborníku
Konference Computational Methods in Systems Biology
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://link.springer.com/chapter/10.1007/978-3-031-15034-0_6
Doi http://dx.doi.org/10.1007/978-3-031-15034-0_6
Klíčová slova boolean network; monotonic function; influence graph
Přiložené soubory
Popis One of the central issues in logical modeling is whether a certain property of the model emerges due to its topological structure (i.e. its influence graph), or due to its dynamical structure (i.e. its logical update functions). In this paper, we practically evaluate a previously proposed formal instrument for studying this question: monotonic model pools and their associated skeleton Boolean networks. Specifically, we propose a simplified over-approximation theorem for skeleton networks and study the emergence of variable stability in these systems. Additionally, we consider the notion of minimal stabilizing interventions and show how to compute such interventions symbolically. We survey the practicality of this methodology on 100+ real-world Boolean networks.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.