Intervals on weakly ordered partial commutative groups of linear operators

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

JANDA Jiří

Rok publikování 2012
Druh Článek ve sborníku
Konference Quantitative Logic and Soft Computing: Proceedings of the QL&SC 2012, Xian, China 12-15 May 2012
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Obor Obecná matematika
Klíčová slova (generalized) effect algebra; weakly ordered partial group; Hilbert space; unbounded linear operator; states; interval effect algebra
Popis The generalized effect algebra was presented as a generalization of effect algebra for an algebraic description of the structure of the set of all positive linear operators densely defined on Hilbert space with the usual sum of operators. A structure of the set of not only positive linear operators can be described with the notion of weakly ordered partial commutative group (wop-group). With a restriction of the usual sum, the important subset of all self-adjoint operators forms a substructure of the set of all linear operators. We investigate the properties of intervals in wop-groups of linear operators and showing that they can be organised into effect algebras with nonempty set of states.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.