Triple Representation Theorem for homogeneous effect algebras
Autoři | |
---|---|
Rok publikování | 2012 |
Druh | Článek ve sborníku |
Konference | 2012 42ND IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL) |
Fakulta / Pracoviště MU | |
Citace | |
www | http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6214831 |
Doi | http://dx.doi.org/10.1109/ISMVL.2012.27 |
Obor | Obecná matematika |
Klíčová slova | Homogeneous effect algebra; TRT-effect algebra; orthocomplete effect algebra; lattice effect algebra; MV-algebra; block; center; atom; sharp element; meager element; sharply dominating effect algebra |
Přiložené soubory | |
Popis | The aim of our paper is to prove the Triple Representation Theorem, which was established by Jenca in the setting of complete lattice effect algebras, for a special class of homogeneous effect algebras, namely TRT-effect algebras. This class includes complete lattice effect algebras, sharply dominating Archimedean atomic lattice effect algebras and homogeneous orthocomplete effect algebras. |
Související projekty: |