Recurrent concepts in data streams classification

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

GAMA Joao KOSINA Petr

Rok publikování 2013
Druh Článek v odborném periodiku
Časopis / Zdroj Knowledge and Information Systems
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://dx.doi.org/10.1007/s10115-013-0654-6
Doi http://dx.doi.org/10.1007/s10115-013-0654-6
Obor Informatika
Klíčová slova Data streams; Concept drift; Meta-learning; Recurrent concepts
Popis This work addresses the problem of mining data streams generated in dynamic environments where the distribution underlying the observations may change over time. We present a system that monitors the evolution of the learning process. The system is able to self-diagnose degradations of this process, using change detection mechanisms, and self-repair the decision models. The system uses meta-learning techniques that characterize the domain of applicability of previously learned models. The meta-learner can detect recurrence of contexts, using unlabeled examples, and take pro-active actions by activating previously learned models. The experimental evaluation on three text mining problems demonstrates the main advantages of the proposed system: it provides information about the recurrence of concepts and rapidly adapts decision models when drift occurs.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.