Efficient k-NN based HEp-2 cells classifier

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

STOKLASA Roman MAJTNER Tomáš SVOBODA David

Rok publikování 2014
Druh Článek v odborném periodiku
Časopis / Zdroj PATTERN RECOGNITION
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://www.sciencedirect.com/science/article/pii/S0031320313003932
Doi http://dx.doi.org/10.1016/j.patcog.2013.09.021
Obor Informatika
Klíčová slova HEp-2 cells; Classifier; Image descriptor; Classification; Nearest neighbours; IIF; Indirect Immunofluorescence
Přiložené soubory
Popis Human Epithelial (HEp-2) cells are commonly used in the Indirect Immunofluorescence (IIF) tests to detect autoimmune diseases. The diagnosis consists of searching and classification to specific patterns created by Anti-Nuclear Antibodies (ANAs) in the patient serum. Evaluation of the IIF test is mostly done by humans, which means that it is highly dependent on the experience and expertise of the physician. Therefore, a significant amount of research has been focused on the development of computer aided diagnostic systems which could help with the analysis of images from microscopes. This work deals with the design and development of HEp-2 cells classifier. The classifier is able to categorize pre-segmented images of HEp-2 cells into 6 classes. The core of this engine consists of the following image descriptors: Haralick features, Local Binary Patterns, SIFT, surface description and a granulometry-based descriptor. These descriptors produce vectors that form metric spaces. k-NN classification is based on aggregated distance function which combines several features together. An extensive set of evaluations was performed on the publicly available MIVIA HEp-2 images dataset which allows a direct comparison of our approach with other solutions. The results show that our approach is one of the leading classifiers when comparing with other participants in the HEp-2 Cells Classification Contest.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.