Symmetries of finite Heisenberg groups for k-partite systems

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

KORBELÁŘ Miroslav TOLAR Jiří

Rok publikování 2012
Druh Článek ve sborníku
Konference 7th International Conference on Quantum Theory and Symmetries (QTS7), 7–13 August 2011, Prague, Czech Republic
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www http://iopscience.iop.org/1742-6596/343/1/012122
Doi http://dx.doi.org/10.1088/1742-6596/343/1/012122
Obor Obecná matematika
Klíčová slova mutually unbiased bases; quantum-mechanics; hilbert-space; construction
Popis Symmetries of finite Heisenberg groups represent an important tool for the study of deeper structure of finite-dimensional quantum mechanics. This short contribution presents extension of previous investigations to composite quantum systems comprised of k subsystems which are described with position and momentum variables in Z(ni) i - 1, ..., k. Their Hilbert spaces are given by k-fold tensor products of Hilbert spaces of dimensions n(1), ..., n(k). Symmetry group of the corresponding finite Heisenberg group is given by the quotient group of a certain normalizer. We provide the description of the symmetry groups for arbitrary multipartite cases. The new class of symmetry groups represents very specific generalization of finite symplectic groups over modular rings.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.