RSurf - the Efficient Texture-Based Descriptor for Fluorescence Microscopy Images of HEp-2 Cells

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

MAJTNER Tomáš STOKLASA Roman SVOBODA David

Rok publikování 2014
Druh Článek ve sborníku
Konference 22nd International Conference on Pattern Recognition
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1109/ICPR.2014.215
Obor Využití počítačů, robotika a její aplikace
Klíčová slova texture descriptor;rsurf;hep-2
Popis In biomedical image analysis, object description and classification tasks are very common. Our work relates to the problem of classification of Human Epithelial (HEp-2) cells. Since the crucial part of each classification process is the feature extraction and selection, much attention should be concentrated to the development of proper image descriptors. In this article, we introduce a new efficient texture-based image descriptor for HEp-2 images. We compare proposed descriptor with LBP, Haralick features (GLCM statistics) and Tamura features using the public MIVIA HEp-2 Images Dataset. Our descriptor outperforms all previously mentioned approaches and the classifier based solely on the proposed descriptor is able to achieve the accuracy as high as 87.8%.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.