Kinetics of heterogeneous reactions of ozone with representative PAHs and an alkene at the air–ice interface at 258 and 188 K

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

RAY Debajyoti LIŠKOVÁ Hana KLÁN Petr

Rok publikování 2014
Druh Článek v odborném periodiku
Časopis / Zdroj Environmental Science: Processes & Impacts
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www http://pubs.rsc.org/en/Content/ArticleLanding/2014/EM/C3EM00665D#!divAbstract
Doi http://dx.doi.org/10.1039/c3em00665d
Obor Organická chemie
Klíčová slova Ice; snow; ozone; aromatic compounds
Popis The kinetics of the reaction of an alkene (E-stilbene) and three polycyclic aromatic hydrocarbons (perylene, anthracene and fluoranthene), as examples of environmental pollutants, with ozone on the surface of ice grains (also called “artificial snow”), produced by shock-freezing of aqueous solutions, was studied at submonolayer pollutant coverages (c = 1.5 × 10-8 to 3 × 10-10 mol kg-1) and two different temperatures (258 and 188 K). This work supports and extends our previous discovery of a remarkable increase in the apparent ozonation rates with decreasing temperature. The ozonation kinetic results were evaluated using the Langmuir–Hinshelwood model and, in one case, the Eley–Rideal kinetic model. It is shown that the apparent rate enhancement is related to the specific nature of the ice surface at different temperatures, which influences the availability of contaminants to gaseous ozone, and to inherent reactivities of the contaminants. The maximum pseudofirst-order rate constants and the lifetimes of the studied compounds are provided. At a typical atmospheric ozone concentration in polar areas (50 ppbv), the lifetimes were estimated to be on the order of hours (258 K) or tens of minutes (188 K) for alkenes, and hundreds (258 K) or tens (188 K) of days for PAHs, thus approximately of the same magnitude or longer than those found for the gas-phase reactions. We imply that this rate enhancement at lower temperatures is a general phenomenon, and we provide data to implement heterogeneous reactions in snow in models that predict the extent of chemical reactions occurring in cold environments.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.