Can We Execute Stable Microsecond-Scale Atomistic Simulations of Protein-RNA Complexes?

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Středoevropský technologický institut. Oficiální stránka publikace je na webu muni.cz.
Autoři

KREPL Miroslav HAVRILA Marek STADLBAUER Petr BANÁŠ Pavel OTYEPKA Michal PASULKA Josef ŠTEFL Richard ŠPONER Jiří

Rok publikování 2015
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Chemical Theory and Computation
Fakulta / Pracoviště MU

Středoevropský technologický institut

Citace
www http://pubs.acs.org/doi/pdf/10.1021/ct5008108
Doi http://dx.doi.org/10.1021/ct5008108
Obor Fyzikální chemie a teoretická chemie
Klíčová slova MOLECULAR-DYNAMICS SIMULATIONS; PARTICLE MESH EWALD; MECHANICS FORCE-FIELDS; RIBOSOMAL L1 STALK; BINDING PROTEINS; NUCLEIC-ACIDS; CAENORHABDITIS-ELEGANS; CRYSTAL-STRUCTURE; NONCODING RNAS; ANIMAL VIRUS
Popis We report over 30 mu s of unrestrained molecular dynamics simulations of six protein-RNA complexes in explicit solvent. We utilize the AMBER ff99bsc0 chi(OL3) RNA force field combined with the ff99SB protein force field and its more recent ff12SB version with reparametrized side-chain dihedrals. The simulations show variable behavior, ranging from systems that are essentially stable to systems with progressive deviations from the experimental structure, which we could not stabilize anywhere close to the starting experimental structure. For some systems, microsecond-scale simulations are necessary to achieve stabilization after initial sizable structural perturbations. The results show that simulations of protein-RNA complexes are challenging and every system should be treated individually. The simulations are affected by numerous factors, including properties of the starting structures (the initially high force field potential energy, resolution limits, conformational averaging, crystal packing, etc.), force field imbalances, and real flexibility of the studied systems. These factors, and thus the simulation behavior, differ from system to system. The structural stability of simulated systems does not correlate with the size of buried interaction surface or experimentally determined binding affinities but reflects the type of protein-RNA recognition. Protein-RNA interfaces involving shape-specific recognition of RNA are more stable than those relying on sequence-specific RNA recognition. The differences between the protein force fields are considerably smaller than the uncertainties caused by sampling and starting structures. The ff12SB improves description of the tyrosine side-chain group, which eliminates some problems associated with tyrosine dynamics.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.