On fixed points of the lower set operator

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

ALMEIDA Jorge CANO Antonio KLÍMA Ondřej PIN Jean-Eric

Rok publikování 2015
Druh Článek v odborném periodiku
Časopis / Zdroj International Journal of Algebra and Computation
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Doi http://dx.doi.org/10.1142/S021819671540010X
Obor Obecná matematika
Klíčová slova Ordered semigroups; pseudovarieties; lower sets; power operator; inequalities; pseudoidentities
Popis Lower subsets of an ordered semigroup form in a natural way an ordered semigroup. This lower set operator gives an analogue of the power operator already studied in semigroup theory. We present a complete description of the lower set operator applied to varieties of ordered semigroups. We also obtain large families of fixed points for this operator applied to pseudovarieties of ordered semigroups, including all examples found in the literature. This is achieved by constructing six types of inequalities that are preserved by the lower set operator. These types of inequalities are shown to be independent in a certain sense. Several applications are also presented, including the preservation of the period for a pseudovariety of ordered semigroups whose image under the lower set operator is proper.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.