Increasing Coverage of Translation Memories with Linguistically Motivated Segment Combination Methods

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

MEDVEĎ Marek BAISA Vít HORÁK Aleš

Rok publikování 2015
Druh Článek ve sborníku
Konference Proceedings of The Workshop on Natural Language Processing for Translation Memories (NLP4TM)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www The workshop on Natural Language Processing for Translation Memories
Obor Informatika
Klíčová slova transaltion memories; DGT; MemoQ; Moses; segment; CAT
Popis Translation memories (TMs) used in computer-aided translation (CAT) systems are the highest-quality source of parallel texts since they consist of segment translation pairs approved by professional human translators. The obvious problem is their size and coverage of new document segments when compared with other parallel data. In this paper, we describe several methods for expanding translation memories using linguistically motivated segment combining approaches concentrated on preserving the high translational quality. The evaluation of the methods was done on a medium-size real-world translation memory and documents provided by a Czech translation company as well as on a large publicly available DGT translation memory published by European Commission. The asset of the TM expansion methods were evaluated by the pre-translation analysis of widely used MemoQ CAT system and the METEOR metric was used for measuring the quality of fully expanded new translation segments.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.