Regular Gleason Measures and Generalized Effect Algebras
Autoři | |
---|---|
Rok publikování | 2015 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | International Journal of Theoretical Physics |
Fakulta / Pracoviště MU | |
Citace | |
Doi | http://dx.doi.org/10.1007/s10773-015-2509-2 |
Obor | Obecná matematika |
Klíčová slova | Hilbert space; Measure; Regular measure; sigma additive measure; Gleason measure; Generalized effect algebra; Bilinear form; Singular bilinear form; Regular bilinear form; Monotone convergence |
Popis | We study measures, finitely additive measures, regular measures, and sigma additive measures that can attain even infinite values on the quantum logic of a Hilbert space. We show when particular classes of non-negative measures can be studied in the frame of generalized effect algebras. |
Související projekty: |