Multi-modal Similarity Retrieval with Distributed Key-value Store

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

NOVÁK David

Rok publikování 2015
Druh Článek v odborném periodiku
Časopis / Zdroj MOBILE NETWORKS & APPLICATIONS
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1007/s11036-014-0561-4
Obor Informatika
Klíčová slova Similarity search; Multi-modal search; Big Data; Scalability; Distributed hash table
Popis We propose a system architecture for large-scale similarity search in various types of digital data. The architecture combines contemporary highly-scalable distributed data stores with recent efficient similarity indexes and also with other types of search indexes. The system enables various types of data access by distance-based similarity queries, standard term and attribute queries, and advanced queries combining several search aspects (modalities). The first part of this work describes the generic architecture and similarity index PPP-Codes, which is suitable for our system. In the second part, we describe two specific instances of this architecture that manage two large collections of digital images and provide content-based visual search, keyword search, attribute-based access, and their combinations. The first collection is the CoPhIR benchmark with 106 million images accessed by MPEG7 visual descriptors and the second collection contains 20 million images with complex features obtained from deep convolutional neural network.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.