Experimental Analysis of Mastery Learning Criteria

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

PELÁNEK Radek ŘIHÁK Jiří

Rok publikování 2017
Druh Článek ve sborníku
Konference Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://dl.acm.org/citation.cfm?id=3079667
Doi http://dx.doi.org/10.1145/3079628.3079667
Obor Informatika
Klíčová slova mastery learning; learner modeling; Bayesian knowledge tracing; exponential moving average
Popis A common personalization approach in educational systems is mastery learning. A key step in this approach is a criterion that determines whether a learner has achieved mastery. We thoroughly analyze several mastery criteria for the basic case of a single well-specified knowledge component. For the analysis we use experiments with both simulated and real data. The results show that the choice of data sources used for mastery decision and setting of thresholds are more important than the choice of a learner modeling technique. We argue that a simple exponential moving average method is a suitable technique for mastery criterion and propose techniques for the choice of a mastery threshold.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.