A Research Roadmap of Big Data Clustering Algorithms for Future Internet of Things

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Ústav výpočetní techniky. Oficiální stránka publikace je na webu muni.cz.
Autoři

BANGUI Hind GE Mouzhi BÜHNOVÁ Barbora

Rok publikování 2019
Druh Článek v odborném periodiku
Časopis / Zdroj International Journal of Organizational and Collective Intelligence
Fakulta / Pracoviště MU

Ústav výpočetní techniky

Citace
www http://dx.doi.org/10.4018/IJOCI.2019040102
Doi http://dx.doi.org/10.4018/IJOCI.2019040102
Klíčová slova Big Data; Internet of Things; Clustering Algorithm; Machine Learning; Mobile Networks
Popis Due to the massive data increase in different Internet of Things (IoT) domains such as healthcare IoT and Smart City IoT, Big Data technologies have been emerged as critical analytics tools for analyzing the IoT data. Among the Big Data technologies, data clustering is one of the essential approaches to process the IoT data. However, how to select a suitable clustering algorithm for IoT data is still unclear. Furthermore, since Big Data technology are still in its initial stage for different IoT domains, it is thus valuable to propose and structure the research challenges between Big Data and IoT. Therefore, this paper starts from reviewing and comparing the data clustering algorithms that can be applied in IoT datasets, and then extends the discussions to a broader IoT context such as IoT dynamics and IoT mobile networks. Finally, this paper identifies a set of research challenges that harvest a research roadmap for the Big Data research in IoT domains. The proposed research roadmap aims at bridging the research gaps between Big Data and various IoT contexts.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.