The complexity landscape of decompositional parameters for ILP

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

GANIAN Robert ORDYNIAK Sebastian

Rok publikování 2018
Druh Článek v odborném periodiku
Časopis / Zdroj ARTIFICIAL INTELLIGENCE
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1016/j.artint.2017.12.006
Klíčová slova integer linear programming; treewidth; treedepth; parameterized complexity
Popis Integer Linear Programming (ILP) can be seen as the archetypical problem for NP-complete optimization problems, and a wide range of problems in artificial intelligence are solved in practice via a translation to ILP. Despite its huge range of applications, only few tractable fragments of ILP are known, probably the most prominent of which is based on the notion of total unimodularity. Using entirely different techniques, we identify new tractable fragments of ILP by studying structural parameterizations of the constraint matrix within the framework of parameterized complexity. In particular, we show that ILP is fixed-parameter tractable when parameterized by the treedepth of the constraint matrix and the maximum absolute value of any coefficient occurring in the ILP instance. Together with matching hardness results for the more general parameter treewidth, we give an overview of the complexity of ILP w.r.t. decompositional parameters defined on the constraint matrix.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.