Recognizing User-Defined Subsequences in Human Motion Data

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

SEDMIDUBSKÝ Jan ZEZULA Pavel

Rok publikování 2019
Druh Článek ve sborníku
Konference International Conference on Multimedia Retrieval (ICMR)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1145/3323873.3326922
Klíčová slova 3D skeleton sequence;action recognition;deep features;kNN
Popis Motion capture technologies digitize human movements by tracking 3D positions of specific skeleton joints in time. Such spatio-temporal multimedia data have an enormous application potential in many fields, ranging from computer animation, through security and sports to medicine, but their computerized processing is a difficult problem. In this paper, we focus on an important task of recognition of a user-defined motion, based on a collection of labelled actions known in advance. We utilize current advances in deep feature learning and scalable similarity retrieval to build an effective and efficient k-nearest-neighbor recognition technique for 3D human motion data. The properties of the technique are demonstrated by a web application which allows a user to browse long motion sequences and specify any subsequence as the input for probabilistic recognition based on 130 predefined classes.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.