Neural Tagger for Czech Language: Capturing Linguistic Phenomena in Web Corpora

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

NEVĚŘILOVÁ Zuzana STARÁ Marie

Rok publikování 2019
Druh Článek ve sborníku
Konference Proceedings of the Thirteenth Workshop on Recent Advances in Slavonic Natural Language Processing, RASLAN 2019
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://nlp.fi.muni.cz/raslan/2019/paper10-neverilova.pdf
Klíčová slova Czech Tagger; Multi-word Expressions; Pretrained WordEmbeddings
Popis We propose a new tagger for the Czech language and particu-larly for the tagset used for annotation of corpora of the TenTen family.The tagger is based on neural networks with pretrained word embed-dings. We selected the newest Czech Web corpus of the TenTen familyas training data, but we removed sentences with phenomena that wereoften annotated incorrectly. We let the tagger to learn the annotation ofthese phenomena on its own. We also experimented with the recognitionof multi-word expressions since this information can support the correcttagging.We evaluated the tagger on 6,950 sentences (84,023 tokens) from thecstenten17corpus and achieved 75.25% accuracy when compared bytags. When compared by attributes, we achieved 91.62% accuracy; theaccuracy of POS tag prediction is 96.5%.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.