SiLi Index: Data Structure for Fast Vector Space Searching
Autoři | |
---|---|
Rok publikování | 2019 |
Druh | Článek ve sborníku |
Konference | Proceedings of the Thirteenth Workshop on Recent Advances in Slavonic Natural Languages Processing, RASLAN 2019 |
Fakulta / Pracoviště MU | |
Citace | |
www | https://nlp.fi.muni.cz/raslan/2019/paper07-herman.pdf |
Klíčová slova | word embeddings; vector space; semantic similarity |
Popis | Nearest neighbor queries in high-dimensional spaces are ex-pensive. In this article, we propose a method of building and querying astand-alone data structure, SiLi (SimilarityList) Index, which supports ap-proximating the results of k-NN queries in high-dimensional spaces, whileusing a significantly reduced amount of system memory and processortime compared to the usual brute-force search methods. |
Související projekty: |