Silver Amalgam Nanoparticles and Microparticles: A Novel Plasmonic Platform for Spectroelectrochemistry

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Středoevropský technologický institut. Oficiální stránka publikace je na webu muni.cz.
Autoři

LIGMAJER F. HORAK M. SIKOLA T. FOJTA Miroslav DANHEL A.

Rok publikování 2019
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Physical Chemistry C
Fakulta / Pracoviště MU

Středoevropský technologický institut

Citace
www https://pubs.acs.org/doi/10.1021/acs.jpcc.9b04124
Doi http://dx.doi.org/10.1021/acs.jpcc.9b04124
Klíčová slova OPTICAL-PROPERTIES; METAL NANOPARTICLES; SINGLE; MERCURY; ELECTRODES; SCATTERING; SENSORS; ELECTROCHEMISTRY; ELECTROCATALYSIS; SPECTROSCOPY
Popis Plasmonic nanoparticles from unconventional materials can improve or even bring some novel functionalities into the disciplines inherently related to plasmonics such as photochemistry or (spectro)electrochemistry. They can, for example, catalyze various chemical reactions or act as nanoelectrodes and optical transducers in various applications. Silver amalgam is the perfect example of such an unconventional plasmonic material, albeit it is well-known in the field of electrochemistry for its wide cathodic potential window and strong adsorption affinity of biomolecules to its surface. In this study, we investigate in detail the optical properties of nanoparticles and microparticles made from silver amalgam and correlate their plasmonic resonances with their morphology. We use optical spectroscopy techniques on the ensemble level and electron energy loss spectroscopy on the single-particle level to demonstrate the extremely wide spectral range covered by the silver amalgam localized plasmonic resonances, ranging from ultraviolet all the way to the mid-infrared wavelengths. Our results establish silver amalgam as a suitable material for introduction of plasmonic functionalities into photochemical and spectroelectrochemical systems, where the plasmonic enhancement of electromagnetic fields and light emission processes could synergistically meet with the superior electrochemical characteristics of mercury.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.