Improving RNN-based Answer Selection for Morphologically Rich Languages

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

MEDVEĎ Marek HORÁK Aleš SABOL Radoslav

Rok publikování 2020
Druh Článek ve sborníku
Konference Proceedings of the 12th International Conference on Agents and Artificial Intelligence
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.5220/0008979206440651
Klíčová slova Question Answering; Question Classification; Answer Classification; Czech; Simple Question Answering Database; SQAD
Popis Question answering systems have improved greatly during the last five years by employing architectures of deep neural networks such as attentive recurrent networks or transformer-based networks with pretrained con- textual information. In this paper, we present the results and detailed analysis of experiments with the largest question answering benchmark dataset for the Czech language. The best results evaluated in the text reach the accuracy of 72 %, which is a 4 % improvement to the previous best result. We also introduce the newest version of the Czech Question Answering benchmark dataset SQAD 3.0, which was substantially extended to more than 13,000 question-answer pairs, and we report the first answer selection results on this dataset which indicate that the size of the training data is important for the task.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.