On the Application of Convex Transforms to Metric Search

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

CONNOR Richard DEARLE Alan MÍČ Vladimír ZEZULA Pavel

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Pattern Recognition Letters
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://www.sciencedirect.com/science/article/abs/pii/S0167865520303068
Doi http://dx.doi.org/10.1016/j.patrec.2020.08.008
Klíčová slova similarity search; transformation of distance function; metric space; convex transform
Popis Scalable similarity search in metric spaces relies on using the mathematical properties of the space in order to allow efficient querying. Most important in this context is the triangle inequality property, which can allow the majority of individual similarity comparisons to be avoided for a given query. However many important metric spaces, typically those with high dimensionality, are not amenable to such techniques. In the past convex transforms have been studied as a pragmatic mechanism which can overcome this effect; however the problem with this approach is that the metric properties may be lost, leading to loss of accuracy. Here, we study the underlying properties of such transforms and their effect on metric indexing mechanisms. We show there are some spaces where certain transforms may be applied without loss of accuracy, and further spaces where we can understand the engineering tradeoffs between accuracy and efficiency. We back these observations with experimental analysis. To highlight the value of the approach, we show three large spaces deriving from practical domains whose dimensionality prevents normal indexing techniques, but where the transforms applied give scalable access with a relatively small loss of accuracy.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.