On the existence of local quaternionic contact geometries
Autoři | |
---|---|
Rok publikování | 2020 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | New York Journal of Mathematics |
Fakulta / Pracoviště MU | |
Citace | |
www | http://nyjm.albany.edu/j/2020/26-45v.pdf |
Klíčová slova | quaternionic contact; equivalence problem; Cartan connection; involution |
Popis | We exploit the Cartan-K¨ahler theory to prove the local existence of real analytic quaternionic contact structures for any prescribed values of the respective curvature functions and their covariant derivatives at a given point on a manifold. We show that, in a certain sense, the different real analytic quaternionic contact geometries in 4n + 3 dimensions depend, modulo diffeomorphisms, on 2n + 2 real analytic functions of 2n + 3 variables. |
Související projekty: |