Towards Scalable Retrieval of Human Motion Episodes

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

BUDÍKOVÁ Petra SEDMIDUBSKÝ Jan HORVÁTH Ján ZEZULA Pavel

Rok publikování 2020
Druh Článek ve sborníku
Konference 22nd IEEE International Symposium on Multimedia (ISM)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
Doi http://dx.doi.org/10.1109/ISM.2020.00015
Klíčová slova skeleton data; human motion retrieval; motion episodes; text-based processing
Popis With the increasing availability of human motion data captured in the form of 2D/3D skeleton sequences, more complex motion recordings need to be processed. In this paper, we study the problem of similarity-based matching of medium-sized unsegmented skeleton sequences, which we denote as motion episodes. We first apply standard pose-based approaches for matching episodes and analyze their shortcomings. Then, we adopt a recent segment-based approach that transforms episode data into a text-like representation, and apply mature text-processing techniques for matching episodes. We demonstrate that this text-based approach achieves promising results in the terms of both effectiveness and efficiency, and can be further indexed to implement scalable episode retrieval.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.