Beyond binary correctness: Classification of students’ answers in learning systems

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

PELÁNEK Radek EFFENBERGER Tomáš

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj User Modeling and User-Adapted Interaction
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://doi.org/10.1007/s11257-020-09265-5
Doi http://dx.doi.org/10.1007/s11257-020-09265-5
Klíčová slova adaptive learning; student modeling; answer classification; response time
Popis Adaptive learning systems collect data on student performance and use them to personalize system behavior. Most current personalization techniques focus on the correctness of answers. Although the correctness of answers is the most straightforward source of information about student state, research suggests that additional data are also useful, e.g., response times, hints usage, or specific values of incorrect answers. However, these sources of data are not easy to utilize and are often used in an ad hoc fashion. We propose to use answer classification as an interface between raw data about student performance and algorithms for adaptive behavior. Specifically, we propose a classification of student answers into six categories: three classes of correct answers and three classes of incorrect answers. The proposed classification is broadly applicable and makes the use of additional interaction data much more feasible. We support the proposal by analysis of extensive data from adaptive learning systems.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.