The Poincare Lemma, Antiexact Forms, and Fermionic Quantum Harmonic Oscillator

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

KYCIA Radoslaw Antoni

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Results in Mathematics
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1007/s00025-020-01247-8
Doi http://dx.doi.org/10.1007/s00025-020-01247-8
Klíčová slova Poincare lemma; antiexact differential forms; homotopy operator; fermionic harmonic oscillator; complex manifold
Popis The paper focuses on various properties and applications of the homotopy operator, which occurs in the Poincare lemma. In the first part, an abstract operator calculus is constructed, where the exterior derivative is an abstract derivative and the homotopy operator plays the role of an abstract integral. This operator calculus can be used to formulate abstract differential equations. An example of the eigenvalue problem that resembles the fermionic quantum harmonic oscillator is presented. The second part presents the dual complex to the Dolbeault bicomplex generated by the homotopy operator on complex manifolds.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.