Limits of the Nuclear Ensemble Method for Electronic Spectra Simulations: Temperature Dependence of the (E)-Azobenzene Spectrum

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

SRŠEŇ Štěpán SITA Jaroslav SLAVÍČEK Petr LADÁNYI Vít HEGER Dominik

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Chemical Theory and Computation
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1021/acs.jctc.0c00579
Doi http://dx.doi.org/10.1021/acs.jctc.0c00579
Klíčová slova Absorption; Chemical structure; Nanoelectromechanical systems; Mathematical methods; Absorption spectroscopy
Popis We explore the range of applicability of the nuclear ensemble method (NEM) for quantitative simulations of absorption spectra and their temperature variations. We formulate a "good practice" for the NEM based on statistical theory. Special attention is paid to proper treatment of uncertainty estimation including the convergence with the number of samples, which is often neglected in the field. As a testbed, we have selected a well-known chromophore, (E)-azobenzene. We measured its temperature difference UV-vis absorption spectra in methanol, which displayed two dominant features: a moderate increase in the intensity of the n pi* band and a pronounced decrease in intensity of the low-energy part of the pi pi* band. We attributed both features to increasing non-Condon effects with temperature. We show that the NEM based on the path integral molecular dynamics combined with range-separated hybrid functionals provides quantitatively accurate spectra and their differences. Experimentally, the depletion of the absorption in the pi pi* band showed a characteristic vibrational progression that cannot be reproduced with the NEM. We show that hundreds of thousands of samples are necessary to achieve an accuracy sufficient for the unambiguous explanation of the observed temperature effects. We provide a detailed analysis of the temperature effects on the spectrum based on the harmonic model of the system combined with the NEM. We also rationalize the vibrational structure of the spectrum using the Franck-Condon principle.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.