A Model of Aerobic and Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus ferrooxidans

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

KUČERA Jiří LOCHMAN Jan BOUCHAL Pavel PAKOSTOVA Eva MIKULÁŠEK Kamil HEDRICH Sabrina JANICZEK Oldřich MANDL Martin JOHNSON D. Barrie

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Frontiers in Microbiology
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.3389/fmicb.2020.610836
Doi http://dx.doi.org/10.3389/fmicb.2020.610836
Klíčová slova Acidithiobacillus; extremophiles; ferric iron reduction; hydrogen metabolism; multi-omics; oxygen reduction
Popis Hydrogen can serve as an electron donor for chemolithotrophic acidophiles, especially in the deep terrestrial subsurface and geothermal ecosystems. Nevertheless, the current knowledge of hydrogen utilization by mesophilic acidophiles is minimal. A multi-omics analysis was applied on Acidithiobacillus ferrooxidans growing on hydrogen, and a respiratory model was proposed. In the model, [NiFe] hydrogenases oxidize hydrogen to two protons and two electrons. The electrons are used to reduce membrane-soluble ubiquinone to ubiquinol. Genetically associated iron-sulfur proteins mediate electron relay from the hydrogenases to the ubiquinone pool. Under aerobic conditions, reduced ubiquinol transfers electrons to either cytochrome aa(3) oxidase via cytochrome bc(1) complex and cytochrome c(4) or the alternate directly to cytochrome bd oxidase, resulting in proton efflux and reduction of oxygen. Under anaerobic conditions, reduced ubiquinol transfers electrons to outer membrane cytochrome c (ferrireductase) via cytochrome bc(1) complex and a cascade of electron transporters (cytochrome c(4), cytochrome c(552), rusticyanin, and high potential iron-sulfur protein), resulting in proton efflux and reduction of ferric iron. The proton gradient generated by hydrogen oxidation maintains the membrane potential and allows the generation of ATP and NADH. These results further clarify the role of extremophiles in biogeochemical processes and their impact on the composition of the deep terrestrial subsurface.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.