Reversibility of computations in graph-walking automata

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

KUNC Michal OKHOTIN Alexander

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Information and computation
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1016/j.ic.2020.104631
Doi http://dx.doi.org/10.1016/j.ic.2020.104631
Klíčová slova Graph-walking automata; Tree-walking automata; Finite automata; Reversible computation; Halting
Popis Graph-walking automata (GWA) are finite-state devices that traverse graphs given as an input by following their edges; they have been studied both as a theoretical notion and as a model of pathfinding in robotics. If a graph is regarded as the set of memory configurations of a certain abstract machine, then various families of devices can be described as GWA: such are two-way finite automata, their multi-head and multi-tape variants, tree-walking automata and their extension with pebbles, picture-walking automata, space-bounded Turing machines, etc. This paper defines a transformation of an arbitrary deterministic GWA to a reversible GWA. This is done with a linear blow-up in the number of states, where the constant factor depends on the degree of the graphs being traversed. The construction directly applies to all basic models representable as GWA, and, in particular, subsumes numerous existing results for making individual models halt on every input. (C) 2020 Elsevier Inc. All rights reserved.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.