Decaying positive global solutions of second order difference equations with mean curvature operator

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

DOŠLÁ Zuzana MATUCCI Serena ŘEHÁK Pavel

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Electronic Journal of Qualitative Theory of Differential Equations
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.14232/ejqtde.2020.1.72
Doi http://dx.doi.org/10.14232/ejqtde.2020.1.72
Klíčová slova second order nonlinear difference equations; Euclidean mean curvature operator; boundary value problems; decaying solutions; recessive solutions; comparison theorems
Popis A boundary value problem on an unbounded domain, associated to difference equations with the Euclidean mean curvature operator is considered. The existence of solutions which are positive on the whole domain and decaying at infinity is examined by proving new Sturm comparison theorems for linear difference equations and using a fixed point approach based on a linearization device. The process of discretization of the boundary value problem on the unbounded domain is examined, and some discrepancies between the discrete and the continuous cases are pointed out, too.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.