Towards Faster Big Data Analytics for Anti-Jamming Applications in vehicular ad-hoc network

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

BANGUI Hind GE Mouzhi BÜHNOVÁ Barbora TRANG Le Hong

Rok publikování 2021
Druh Článek v odborném periodiku
Časopis / Zdroj Transactions on Emerging Telecommunications Technologies
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://onlinelibrary.wiley.com/doi/full/10.1002/ett.4280
Doi http://dx.doi.org/10.1002/ett.4280
Klíčová slova Smart mobility; Jamming attack; Anti-jamming; Big data clustering; Coreset; Security ; Data Approximation;VANET; 5/6G
Popis Nowadays, Wireless Vehicular Ad-Hoc Network (VANET) has become a valuable asset for transportation systems. However, this advanced technology is characterized by highly distributed and networked environment, which makes VANET communications vulnerable to malicious jamming attacks. Although Big Data Analytics has been used to solve this critical security issue by supporting the development of anti-jamming applications, as the amount of vehicular data is growing exponentially, the anti-jamming applications face many challenges (i.e, reactions in real-time) due to the lack of specific solutions that can keep up with the fast advancement of VANET. In this paper, we propose a new vehicular data prioritization model based on coresets to accelerate the Big Data Analytics in VANET. Our experimental evaluation shows that our solution can significantly increase the efficiency for clustering in jamming detection while keeping and improving the clustering quality. Also, the proposed solution can enable the real-time detection and be integrated to anti-jamming applications.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.