PENGUINN: Precise Exploration of Nuclear G-Quadruplexes Using Interpretable Neural Networks

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Středoevropský technologický institut. Oficiální stránka publikace je na webu muni.cz.
Autoři

KLIMENTOVÁ Eva POLÁČEK Jakub ŠIMEČEK Petr ALEXIOU Panagiotis

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Frontiers in Genetics
Fakulta / Pracoviště MU

Středoevropský technologický institut

Citace
www https://www.frontiersin.org/articles/10.3389/fgene.2020.568546/full
Doi http://dx.doi.org/10.3389/fgene.2020.568546
Klíčová slova bioinformatics and computational biology; machine learning; deep neural network; G quadruplex; web application; genomic; imbalanced data classification
Přiložené soubory
Popis G-quadruplexes (G4s) are a class of stable structural nucleic acid secondary structures that are known to play a role in a wide spectrum of genomic functions, such as DNA replication and transcription. The classical understanding of G4 structure points to four variable length guanine strands joined by variable length nucleotide stretches. Experiments using G4 immunoprecipitation and sequencing experiments have produced a high number of highly probable G4 forming genomic sequences. The expense and technical difficulty of experimental techniques highlights the need for computational approaches of G4 identification. Here, we present PENGUINN, a machine learning method based on Convolutional neural networks, that learns the characteristics of G4 sequences and accurately predicts G4s outperforming state-of-the-art methods. We provide both a standalone implementation of the trained model, and a web application that can be used to evaluate sequences for their G4 potential.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.