Characterization of quasirandom permutations by a pattern sum

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

CHAN Timothy F. N. KRÁĽ Daniel NOEL Jonathan A. PEHOVA Yanitsa SHARIFZADEH Maryam VOLEC Jan

Rok publikování 2020
Druh Článek v odborném periodiku
Časopis / Zdroj Random Structures and Algorithms
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://dx.doi.org/10.1002/rsa.20956
Doi http://dx.doi.org/10.1002/rsa.20956
Klíčová slova permutations; quasirandomness
Popis It is known that a sequence{pi i}i is an element of Nof permutations is quasirandom if and only if the pattern density of every 4-point permutation in pi iconverges to 1/24. We show that there is a setSof 4-point permutations such that the sum of the pattern densities of the permutations fromSin the permutations pi iconverges to|S|/24if and only if the sequence is quasirandom. Moreover, we are able to completely characterize the setsSwith this property. In particular, there are exactly ten such sets, the smallest of which has cardinality eight.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.