Linear orthogonality spaces as a new approach to quantum logic

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

EMIR Kadir KRUML David PASEKA Jan VETTERLEIN Thomas

Rok publikování 2021
Druh Článek ve sborníku
Konference 2021 IEEE International Symposium on Multiple-Valued Logic (ISMVL 2021)
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://ieeexplore.ieee.org/document/9459669
Doi http://dx.doi.org/10.1109/ISMVL51352.2021.00015
Klíčová slova Orthogonality spaces; undirected graphs; linear orthogonality spaces; finite rank
Popis The notion of an orthogonality space was recently rediscovered as an effective means to characterise the essential properties of quantum logic. The approach can be considered as minimalistic; solely the aspect of mutual exclusiveness is taken into account. In fact, an orthogonality space is simply a set endowed with a symmetric and irreflexive binary relation. If the rank is at least 4 and if a certain combinatorial condition holds, these relational structures can be shown to give rise in a unique way to Hermitian spaces. In this paper, we focus on the finite case. In particular, we investigate orthogonality spaces of rank at most 3.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.