Packing and covering directed triangles asymptotically

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

COOPER Jacob GRZESIK Andrzej KABELA Adam KRÁĽ Daniel

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj European Journal of Combinatorics
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://www.sciencedirect.com/science/article/pii/S0195669821001566
Doi http://dx.doi.org/10.1016/j.ejc.2021.103462
Klíčová slova directed graphs
Popis A well-known conjecture of Tuza asserts that if a graph has at most t pairwise edge-disjoint triangles, then it can be made triangle-free by removing at most 2t edges. If true, the factor 2 would be best possible. In the directed setting, also asked by Tuza, the analogous statement has recently been proven, however, the factor 2 is not optimal. In this paper, we show that if an n-vertex directed graph has at most t pairwise arc-disjoint directed triangles, then there exists a set of at most 1.8t + o(n(2)) arcs that meets all directed triangles. We complement our result by presenting two constructions of large directed graphs with t is an element of Omega(n(2)) whose smallest such set has 1.5t - o(n(2)) arcs. (C) 2021 Elsevier Ltd. All rights reserved.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.