Self-supervised pretraining for transferable quantitative phase image cell segmentation

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Lékařskou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

VIČAR Tomáš CHEMELIK Jiri JAKUBICEK Roman CHMELIKOVA Larisa GUMULEC Jaromír BALVAN Jan PROVAZNÍK Ivo KOLAR Radim

Rok publikování 2021
Druh Článek v odborném periodiku
Časopis / Zdroj BIOMEDICAL OPTICS EXPRESS
Fakulta / Pracoviště MU

Lékařská fakulta

Citace
www https://www.osapublishing.org/boe/fulltext.cfm?uri=boe-12-10-6514&id=459853
Doi http://dx.doi.org/10.1364/BOE.433212
Klíčová slova Self-supervised pretraining; transferable quantitative phase image cell segmentation
Popis In this paper, a novel U-Net-based method for robust adherent cell segmentation for quantitative phase microscopy image is designed and optimised. We designed and evaluated four specific post-processing pipelines. To increase the transferability to different cell types, non-deep learning transfer with adjustable parameters is used in the post-processing step. Additionally, we proposed a self-supervised pretraining technique using nonlabelled data, which is trained to reconstruct multiple image distortions and improved the segmentation performance from 0.67 to 0.70 of object-wise intersection over union. Moreover, we publish a new dataset of manually labelled images suitable for this task together with the unlabelled data for self-supervised pretraining. (c) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.