Interannual variability of air temperature inversions in ice-free area of northern James Ross Island, Antarctica

Logo poskytovatele
Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

AMBROŽOVÁ Klára LÁSKA Kamil MATĚJKA Michael REUDER Joachim

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj Theoretical and Applied Climatology
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://link.springer.com/article/10.1007/s00704-021-03912-6
Doi http://dx.doi.org/10.1007/s00704-021-03912-6
Klíčová slova Air Temperature Inversions; Polar Weather Research; James Ross Island; Antarctica
Popis Air temperature inversions are common features in Antarctica, especially in the interior where they are observed nearly year-round. Large temporal variability of air temperature inversion incidence is typical for the coastal areas and little is known about its occurrence in the Antarctic deglaciated areas. Here we present a 12-year-long time series of near-surface air temperature inversion derived from two automatic weather stations situated at different altitudes (10 and 375 m a.s.l.) in ice-free part of northern James Ross Island (Antarctic Peninsula). The highest monthly relative frequency of temperature inversions during 2006–2017 was observed in July (38%) when the range between minimum and maximum monthly frequencies reached 34%. Both the lowest monthly relative frequency of temperature inversions and the range were found in December with values of 7% and 15%, respectively. The correlation between mean lapse rate and selected mesoscale flow characteristics were tested. The highest correlations were found between lapse rate and specific humidity for the yearly means (0.69 in the 925 hPa pressure level). Negative correlation coefficients were established between lapse rate and air temperature in summer (-?0.65 in the 500 hPa pressure level). Finally, we also used the Weather and Research Forecasting (WRF) model to ascertain its ability to simulate situations as complicated as near-surface air temperature inversion formation in complex terrain. For a strong winter air temperature inversion, simulated air temperature was compared with in situ observations to assess the model performance.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.