Applications of surface dielectric barrier discharge generated from liquid electrode

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

GALMIZ Oleksandr PAVLIŇÁK David ČERNÁK Mirko

Rok publikování 2022
Druh Konferenční abstrakty
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
Popis This contribution presents the special type of Surface Dielectric Barrier Discharge (SDBD). An atmospheric pressure plasma technique was developed for technically simple treatment of inner and/or outer surfaces of hollow dielectric bodies, e.g., plastic tubes. The research results aimed at the application of the discharge will be presented. Using water solution as a discharge electrode makes it possible to combine basic features of both water discharges and surface dielectric barrier discharges [1]. The SDBD is generated from the contact line between the liquid electrode, air and dielectric material (tube). To illustrate the application potential of such SDBD and its basic physical properties, authors present a simple example of hydrophilization of the inner and outer surfaces of polytetrafluoroethylene (PTFE) and polyvinyl chloride (PVC) tubes which play a crucial role in the plastics industry and continues to be a polymer of significant importance. The effect of plasma treatment on PTFE and PVC tubes was verified by the contact angle, XPS and SEM measurements. The next step in the technique development was the construction of several reactors enabling continuous plasma treatment on the laboratory and industrial scale and their successful testing. The technical details of the experimental setup and the results of polyethylene tube treatment are discussed in [2,3]. One of the experiments carried out by the authors was the deposition of liquid precursor (hexamethyldisiloxane) on the PTFE tube's external and internal wall surface with the help of this discharge type. Samples prepared in the dynamic mode were treated by the continual movement of the plasma ring across the tube surface. The motion of the plasma ring was achieved by a mechanism on the principle of two connected vessels. A better description of the apparatus can be found in [4]. Another possible application of such a plasma source was the plasma treatment of PTFE tubes to investigate the possibility of altering the properties of Pseudomonas aeruginosa cell biofilms formed on the inner surface of tubes. Experiments revealed the ability of plasma treatment to partially remove biofilms and inactivate the biofilm-forming cells. Thus, if it was not possible to remove all of the biofilm-forming cells, they were inactivated.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.