Graph neural network inspired algorithm for unsupervised network community detection

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

SOBOLEVSKY Stanislav BELY Aliaksandr

Rok publikování 2022
Druh Článek v odborném periodiku
Časopis / Zdroj Applied Network Science
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://appliednetsci.springeropen.com/articles/10.1007/s41109-022-00500-z
Doi http://dx.doi.org/10.1007/s41109-022-00500-z
Klíčová slova Complex networks; Community detection; Network science
Popis Network community detection often relies on optimizing partition quality functions, like modularity. This optimization appears to be a complex problem traditionally relying on discrete heuristics. And although the problem could be reformulated as continuous optimization, direct application of the standard optimization methods has limited efficiency in overcoming the numerous local extrema. However, the rise of deep learning and its applications to graphs offers new opportunities. And while graph neural networks have been used for supervised and unsupervised learning on networks, their application to modularity optimization has not been explored yet. This paper proposes a new variant of the recurrent graph neural network algorithm for unsupervised network community detection through modularity optimization. The new algorithm’s performance is compared against the state-of-the-art methods. The approach also serves as a proof-of-concept for the broader application of recurrent graph neural networks to unsupervised network optimization.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.