Parameterised Partially-Predrawn Crossing Number

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

HAMM Thekla HLINĚNÝ Petr

Rok publikování 2022
Druh Článek ve sborníku
Konference 38th International Symposium on Computational Geometry (SoCG 2022)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www DOI open access
Doi http://dx.doi.org/10.4230/LIPIcs.SoCG.2022.46
Klíčová slova Crossing Number; Drawing Extension; Parameterised Complexity; Partial Planarity
Popis Inspired by the increasingly popular research on extending partial graph drawings, we propose a new perspective on the traditional and arguably most important geometric graph parameter, the crossing number. Specifically, we define the partially predrawn crossing number to be the smallest number of crossings in any drawing of a graph, part of which is prescribed on the input (not counting the prescribed crossings). Our main result - an FPT-algorithm to compute the partially predrawn crossing number - combines advanced ideas from research on the classical crossing number and so called partial planarity in a very natural but intricate way. Not only do our techniques generalise the known FPT-algorithm by Grohe for computing the standard crossing number, they also allow us to substantially improve a number of recent parameterised results for various drawing extension problems.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.