No additional tournaments are quasirandom-forcing

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

HANCOCK Robert Arthur KABELA Adam KRÁĽ Daniel MARTINS Taisa PARENTE Roberto SKERMAN Fiona VOLEC Jan

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj European Journal of Combinatorics
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www http://doi.org/10.1016/j.ejc.2022.103632
Doi http://dx.doi.org/10.1016/j.ejc.2022.103632
Klíčová slova tournaments; quasirandomness
Popis A tournament H is quasirandom-forcing if the following holds for every sequence (Gn)n is an element of N of tournaments of growing orders: if the density of H in Gn converges to the expected density of H in a random tournament, then (Gn)n is an element of N is quasirandom. Every transitive tournament with at least 4 vertices is quasirandom-forcing, and Coregliano (2019) showed that there is also a non-transitive 5-vertex tournament with the property. We show that no additional tournament has this property. This extends the result of Bucic (2021) that the non-transitive tournaments with seven or more vertices do not have this property.(c) 2022 Published by Elsevier Ltd.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.