An algebraic analysis of implication in non-distributive logics

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

CHAJDA Ivan EMIR Kadir FAZIO Davide LANGER Helmut LEDDA Antonio PASEKA Jan

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of logic and computation
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1093/logcom/exac041
Doi http://dx.doi.org/10.1093/logcom/exac041
Klíčová slova Hilbert algebras; skew Hilbert algebras; pseudocomplemented lattices; sectionally pseudocomplemented lattices; orthomodular lattices; implication algebras
Popis In this paper, we introduce the concept of a (lattice) skew Hilbert algebra as a natural generalization of Hilbert algebras. This notion allows a unified treatment of several structures of prominent importance for mathematical logic, e.g. (generalized) orthomodular lattices, and MV-algebras, which admit a natural notion of implication. In fact, it turns out that skew Hilbert algebras play a similar role for (strongly) sectionally pseudocomplemented posets as Hilbert algebras do for relatively pseudocomplemented ones. We will discuss basic properties of closed, dense and weakly dense elements of skew Hilbert algebras and their applications, and we will provide some basic results on their structure theory.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.