Different classes of genomic inserts contribute to human antibody diversity
Autoři | |
---|---|
Rok publikování | 2022 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Proceedings of the National Academy of Sciences of the United States of America |
Fakulta / Pracoviště MU | |
Citace | |
www | https://www.pnas.org/doi/full/10.1073/pnas.2205470119 |
Doi | http://dx.doi.org/10.1073/pnas.2205470119 |
Klíčová slova | B cell diversity; antibody repertoire; insert |
Popis | Recombination of antibody genes in B cells can involve distant genomic loci and contribute a foreign antigen-binding element to form hybrid antibodies with broad reactivity for Plasmodium falciparum. So far, antibodies containing the extracellular domain of the LAIR1 and LILRB1 receptors represent unique examples of cross-chromosomal antibody diversification. Here, we devise a technique to profile non-VDJ elements from distant genes in antibody transcripts. Independent of the preexposure of donors to malaria parasites, non-VDJ inserts were detected in 80% of individuals at frequencies of 1 in 10(4) to 10(5) B cells. We detected insertions in heavy, but not in light chain or T cell receptor transcripts. We classify the insertions into four types depending on the insert origin and destination: 1) mitochondrial and 2) nuclear DNA inserts integrated at VDJ junctions; 3) inserts originating from telomere proximal genes; and 4) fragile sites incorporated between J-to-constant junctions. The latter class of inserts was exclusively found in memory and in in vitro activated B cells, while all other classes were already detected in naive B cells. More than 10% of inserts preserved the reading frame, including transcripts with signs of antigen-driven affinity maturation. Collectively, our study unravels a mechanism of antibody diversification that is layered on the classical V(D)J and switch recombination. |
Související projekty: |