Machine Learning-Based Node Characterization for Smart Grid Demand Response Flexibility Assessment

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

KRC Rostislav KRATOCHVILOVA Martina PODROUZEK Jan APELTAUER Tomas STUPKA Václav PITNER Tomáš

Rok publikování 2021
Druh Článek v odborném periodiku
Časopis / Zdroj Sustainability
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://doi.org/10.3390/su13052954
Doi http://dx.doi.org/10.3390/su13052954
Klíčová slova smart grid; electricity network; flexibility assessment; renewable energy sources; machine learning; network simulation; artificial neural networks; convolutional neural networks
Popis As energy distribution systems evolve from a traditional hierarchical load structure towards distributed smart grids, flexibility is increasingly investigated as both a key measure and core challenge of grid balancing. This paper contributes to the theoretical framework for quantifying network flexibility potential by introducing a machine learning based node characterization. In particular, artificial neural networks are considered for classification of historic demand data from several network substations. Performance of the resulting classifiers is evaluated with respect to clustering analysis and parameter space of the models considered, while the bootstrapping based statistical evaluation is reported in terms of mean confusion matrices. The resulting meta-models of individual nodes can be further utilized on a network level to mitigate the difficulties associated with identifying, implementing and actuating many small sources of energy flexibility, compared to the few large ones traditionally acknowledged.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.