Inserting Multiple Edges into a Planar Graph

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

CHIMANI Markus HLINĚNÝ Petr

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Graph Algorithms and Applications
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://jgaa.info/accepted/2023/631.pdf
Doi http://dx.doi.org/10.7155/jgaa.00631
Klíčová slova crossing number; multiple edge insertion; fixed parameter tractability
Popis Let G be a connected planar (but not yet embedded) graph and F a set of edges with ends in V(G) and not belonging to E(G). The multiple edge insertion problem (MEI) asks for a drawing of G+F with the minimum number of pairwise edge crossings, such that the subdrawing of G is plane. A solution to this problem is known to approximate the crossing number of the graph G+F, but unfortunately, finding an exact solution to MEI is NP-hard for general F. The MEI problem is linear-time solvable for the special case of |F|=1 (SODA 01 and Algorithmica), and there is a polynomial-time solvable extension in which all edges of F are incident to a common vertex which is newly introduced into G (SODA 09). The complexity for general F but with constant k=|F| was open, but algorithms both with relative and absolute approximation guarantees have been presented (SODA 11, ICALP 11 and JoCO). We present a fixed-parameter algorithm for the MEI problem in the case that G is biconnected, which is extended to also cover the case of connected G with cut vertices of bounded degree. These are the first exact algorithms for the general MEI problem, and they run in time O(|V(G)|) for any constant k.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.