Period-Doubling Bifurcation of Cycles in Retarded Functional Differential Equations

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

ZÁTHURECKÝ Jakub

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Journal of Dynamics and Differential Equations
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1007/s10884-023-10249-3
Doi http://dx.doi.org/10.1007/s10884-023-10249-3
Klíčová slova Retarded functional differential equation; Delayed differential equation; Period-doubling bifurcation; Fredholm operator; Lyapunov-Schmidt reduction
Popis A rigorous description of a period-doubling bifurcation of limit cycles in retarded functional differential equations based on tools of functional analysis and singularity theory is presented. Particularly, sufficient conditions for its occurrence and its normal form coefficients are expressed in terms of derivatives of the operator defining given equations. We also prove the exchange of stability in the case of a non-degenerate period-doubling bifurcation. The approach concerns Fredholm operators, Lyapunov-Schmidt reduction and recognition problem for pitchfork bifurcation.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.