Asymptotic properties for solutions of differential equations with singular p(t)-Laplacian
Autoři | |
---|---|
Rok publikování | 2023 |
Druh | Článek v odborném periodiku |
Časopis / Zdroj | Monatshefte für Mathematik |
Fakulta / Pracoviště MU | |
Citace | |
www | https://doi.org/10.1007/s00605-023-01835-0 |
Doi | http://dx.doi.org/10.1007/s00605-023-01835-0 |
Klíčová slova | Asymptotic behavior; Nonoscillatory solutions; Extremal solutions; Weakly increasing solutions; p(t)-Laplacian; Half-linear differential equations |
Popis | This paper deals with the nonoscillatory solutions of the nonlinear differential equation (a(t)|x'|(p(t)-2)x')' +b(t)|x|(?-2)x = 0 involving "singular" p(t)-Laplacian. Sufficient conditions are given for the existence of extremal solutions, which do not exist in the conventional cases. In addition, we prove the coexistence of extremal solutions and weakly increasing solutions. Some examples are given to illustrate our results. |
Související projekty: |