CRANBERRY: Memory-Effective Search in 100M High-Dimensional CLIP Vectors

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Fakultu informatiky. Oficiální stránka publikace je na webu muni.cz.
Autoři

MÍČ Vladimír SEDMIDUBSKÝ Jan ZEZULA Pavel

Rok publikování 2023
Druh Článek ve sborníku
Konference 16th International Conference on Similarity Search and Applications (SISAP)
Fakulta / Pracoviště MU

Fakulta informatiky

Citace
www https://link.springer.com/chapter/10.1007/978-3-031-46994-7_26
Doi http://dx.doi.org/10.1007/978-3-031-46994-7_26
Klíčová slova approximate similarity searching;high-dimensional data;indexing;filtering;LAION dataset
Popis Recent advances in cross-modal multimedia data analysis necessarily require efficient similarity search on the scales of hundreds of millions of high-dimensional vectors. We address this task by proposing the CRANBERRY algorithm that specifically combines and tunes several existing similarity search strategies. In particular, the algorithm: (1) employs the Voronoi partitioning to obtain a query-relevant candidate set in constant time, (2) applies filtering techniques to prune the obtained candidates significantly, and (3) re-rank the retained candidate vectors with respect to the query vector. Applied to the dataset of 100 million 768-dimensional vectors, the algorithm evaluates 10NN queries with 90% recall and query latency of 1.2s on average, all with a throughput of 15 queries per second on a server with 56 core-CPU, and 4.7q/sec. on a PC.

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.