Sensitive riboflavin sensing using silver nanoparticles deposited onto screen-printed electrodes via controlled-energy spark discharges

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

PAPAVASILEIOU Anastasios HODER Tomáš MEDEK Tomáš PRODROMIDIS Mamas I. HRBÁČ Jan

Rok publikování 2023
Druh Článek v odborném periodiku
Časopis / Zdroj Talanta
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1016/j.talanta.2023.124409
Doi http://dx.doi.org/10.1016/j.talanta.2023.124409
Klíčová slova Spark discharge; Silver nanoparticles; 3D positioning device; Screen-printed electrodes; Riboflavin (vitamin B)
Popis In this work, we elaborated the graphite screen-printed electrodes (SPEs) modification with metal nanoparticles formed as a result of spark discharges produced between a metal wire electrode and SPE that are connected to an Arduino board-based DC high voltage power supply. This sparking device allows, on the one hand, the top-oselective formation of NPs of controlled dimensions through a direct and liquid-free approach, and on the other hand, controls the number and energy of the discharges delivered to the electrode surface during a single spark event. This way, the potential damage to the SPE surface by the action of heat evolved during the sparking process is considerably minimized compared with the standard setup in which each spark event consists of multiple electrical discharges. Data demonstrated that the sensing properties of the resulting electrodes are significantly improved compared with those achieved when conventional spark generators are employed, as demonstrated for silver-sparked SPEs that exhibit enhanced sensitivity to riboflavin. Sparked AgNp-SPEs were characterized using scanning electron microscopy and voltammetric measurements in alkaline conditions. The analytical performance of sparked AgNP-SPEs was evaluated by various electrochemical techniques. Under optimum conditions, the detection range for DPV was from 1.9 (LOQ) to 100 nM riboflavin (R2 = 0.997), while a limit of detection (LOD, S/N 3) of 0.56 nM was achieved. The analytical utility is demonstrated for the deter-mination of riboflavin in the real matrices of B-complex pharmaceutical preparation and an energy drink.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.