Prediction of Urban Population-Facilities Interactions with Graph Neural Network

Logo poskytovatele

Varování

Publikace nespadá pod Filozofickou fakultu, ale pod Přírodovědeckou fakultu. Oficiální stránka publikace je na webu muni.cz.
Autoři

MISHINA Margarita SOBOLEVSKY Stanislav KOVTUN Elizaveta KHRULKOV Alexander BELY Aliaksandr BUDENNYY Semen MITYAGIN Sergey

Rok publikování 2023
Druh Článek ve sborníku
Konference Computational Science and Its Applications – ICCSA 2023 : Lecture Notes in Computer Science, vol 13956
Fakulta / Pracoviště MU

Přírodovědecká fakulta

Citace
www https://doi.org/10.1007/978-3-031-36805-9_23
Doi http://dx.doi.org/10.1007/978-3-031-36805-9_23
Klíčová slova urban mobility; graph neural network; flows prediction
Popis The urban population interacts with service facilities on a daily basis. The information on population-facilities interactions is considered when analyzing the current city organization and revealing gaps in infrastructure at the neighborhood level. However, often this information is limited to several observation areas. The paper presents a new graph-based deep learning approach to reconstruct population-facilities interactions. In the proposed approach, graph attention neural networks learn latent nodes’ representation and discover interpretable dependencies in a graph of interactions based on observed data of one part of the city. A novel normalization technique is used to balance doubly-constrained flows between two locations. The experiments show that the proposed approach outperforms classic models in a bipartite graph of population-facilities interactions.
Související projekty:

Používáte starou verzi internetového prohlížeče. Doporučujeme aktualizovat Váš prohlížeč na nejnovější verzi.